Search results for "mesoporous silica nanoparticles"
showing 10 items of 11 documents
Selective, Highly Sensitive, and Rapid Detection of Genomic DNA by Using Gated Materials:MycoplasmaDetection
2013
The coupling of gated-indicator delivery with highly specific biochemical recognition is an innovative strategy for the detection of DNA sequences, able to compete with classical methods which need PCR amplification, in important areas such as point-of-care diagnostics or detection of specific biological contaminations with pathogens. Such comparatively simple and cheap yet highly selective and sensitive assays hold promise for use in less-developed areas of the world.
Protein recovery as a resource from waste specifically via membrane technology : from waste to wonder
2021
Economic growth and the rapid increase in the world population has led to a greater need for natural resources, which in turn, has put pressure on said resources along with the environment. Water, food, and energy, among other resources, pose a huge challenge. Numerous essential resources, including organic substances and valuable nutrients, can be found in wastewater, and these could be recovered with efficient technologies. Protein recovery from waste streams can provide an alternative resource that could be utilized as animal feed. Membrane separation, adsorption, and microbe-assisted protein recovery have been proposed as technologies that could be used for the aforementioned protein re…
New biocides based on imidazolinium-functionalised hybrid mesoporous silica nanoparticles
2022
Here, we report the development of a new biocide based on hybrid mesoporous silica nanoparticles (MSN). The MSN was synthesized by condensation method in emulsion followed by grafting with two different silylated ionic liquid moieties, namely butyl imidazolinium bromide and imidazolinium propansulfonate betaine. Features of nanoparticles were characterized by Thermogravimetry, Infrared and ss-NMR Spectroscopy, and Transmission Electron Microscopy. The antibacterial properties were tested against a Gram-positive bacterial strain previously isolated from artefacts of interest in the field of Cultural Heritage. Interestingly, the hybrid material presents an antibacterial activity higher than i…
Formulation of Mesoporous Silica Nanoparticles for Controlled Release of Antimicrobials for Stone Preventive Conservation
2020
The biotic deterioration of artifacts of archaeological and artistic interest mostly relies on the action of microorganisms capable of thriving under the most disparate environmental conditions. Thus, to attenuate biodeterioration phenomena, biocides can be used by the restorers to prevent or slow down the microbial growth. However, several factors such as biocide half-life, its wash-out because of environmental conditions, and its limited time of action make necessary its application repeatedly, leading to negative economic implications. Sound and successful treatments are represented by controlled release systems (CRSs) based on porous materials. Here, we report on the design and developm…
A Sensitive Nanosensor for the In Situ Detection of the Cannibal Drug.
2020
[EN] A bio-inspired nanodevice for the selective and sensitive fluorogenic detection of 3,4- methylenedioxypyrovalerone (MDPV), usually known as Cannibal drug, is reported. The sensing nanodevice is based on mesoporous silica nanoparticles (MSNs), loaded with a fluorescent reporter (rhodamine B) and functionalized on their external surface with a dopamine derivative (3), which specifically interacts with the recombinant human dopamine transporter (DAT), capping the pores. In the presence of MDPV, DAT detaches from the MSNs consequently causing rhodamine B release and allowing drug detection. The nanosensor shows a detection limit of 5.2 µM and it is able to detect the MDPV drug both in sali…
Catalytic and photocatalytic epoxidation of limonene: Using mesoporous silica nanoparticles as functional support for a Janus-like approach
2020
Abstract Mesoporous silica nanoparticles (MSN) were used as a platform to design novel active materials for the catalytic and photocatalytic epoxidation of limonene. Binary systems comprised of TiO2 and MSN were used for the catalytic reaction when doped with manganese, and for the photocatalytic reaction when functionalised with hexadecyl chains or imidazolinyl groups. All of the MSN based systems were synthesized by condensation in emulsion. A thorough characterization of the powders has been performed by means of Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES), X-ray diffraction (XRD), FT-IR, Raman and EPR Spectroscopy, Fluorescence and diffuse reflectance UV–vis (DR…
Biocompatibility and internalization assessment of bare and functionalised mesoporous silica nanoparticles
2021
[EN] We report herein an evaluation of the effect of several mesoporous silica nanoparticles (MSNs) on the cellular uptake and in vitro cytotoxicity in human cells. Bare MSNs and MSNs functionalized with polyethylene glycol or hyaluronic acid are employed to evaluate uptake efficiency and mechanisms of endocytosis in cancer (MDA-MB-231) and non-cancer (MCF10A) cells. Moreover, changes in viability, cell cycle, oxidative stress, and mitochondrial membrane potential are evaluated. Our results confirm that MSNs are internalized efficiently by human cells and that uptake mechanisms differ for cell types and particles. We also confirm that MSNs are biocompatible materials that do not induce ROS/…
Fluorogenic Sensing of Carcinogenic Bisphenol A using Aptamer-Capped Mesoporous Silica Nanoparticles
2017
[EN] Mesoporous silica nanoparticles loaded with rhodamine B and capped with a bisphenol A aptamer were used for the selective and sensitive detection of this lethal chemical. The pores of the nanoparticles are selectively opened in the presence of bisphenol A (through its selective coordination with the aptamer) with subsequent rhodamine B delivery. With this capped material a limit of detection as low as 3.5 mu m of bisphenol A was measured.
Functionalization of mesoporous silica nanoparticles through one-pot co-condensation in w/o emulsion
2022
In this work, three different functionalized mesoporous silica nanoparticles (MSNs) were synthesized through the co-condensation synthesis in oil/water emulsion. Hexadecyltrimethoxysilane, triethoxy-3-(2-imidazolin-1-yl)propylsilane and (3-mercaptopropyl)triethoxysilane were used as organo-substituted silica precursors with variable molar ratio with respect to tetraethylorthosilicate (TEOS, 1:4, 1:9, 1:19). The occurred functionalization was investigated by Infrared Spectroscopy and FT-Raman and 29Si {1H} CP-MAS-NMR spectroscopy. Results show that the three materials were successfully functionalized. The influence of the different pendant groups and their concentration on the mesostructured…
Finely Tuned Temperature-Controlled Cargo Release Using Paraffin-Capped Mesoporous Silica Nanoparticles
2011
[EN] Trapped: Mesoporous silica nanoparticles were loaded with a fluorescent guest and functionalized with octadecyltrimethoxysilane. The alkyl chains interact with paraffins, which build a hydrophobic layer around the particle (see picture). Upon melting of the paraffin, the guest molecule is released, as demonstrated in cells for the guest doxorubicin. The release temperature can be tuned by choosing an appropriate paraffin. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.